Карбюратор: устройство и принцип работы
Обязательной узел системы питания ДВС ХХ века
На автомобилях конца ХХ — начала ХХI веков на смену карбюраторам пришли инжекторные системы подачи топлива. Эти системы впрыска с микропроцессорным управлением способны в течении сотен тысяч километров пробега обеспечивать более точную, в сравнении с карбюратором, дозировку топлива во всех режимах работы мотора. А также сохранять параметры выхлопа двигателя в рамках актуальных экологических требований. Однако карбюраторы продолжают использоваться на мототехнике; различных вспомогательных, стационарных, генераторных, лодочных двигателях; на бензоинструменте (бензопила, газонокосилка и т.п.) Всё об устройстве, видах, принципе работы карбюраторов – в данной публикации.
1. Немного истории. Прежние типы карбюраторов
2. Устройство поплавкового карбюратора
3. Принцип работы поплавкового карбюратора
4. Поплавковая камера
5. Смесительная камера. Дозирующие системы, экономайзеры, эконстаты
6. Система холостого хода
7. Механический «подсос» топлива
8. Классификация карбюраторов
9. Преимущества и недостатки использования карбюраторов
Слово «карбюратор» имеет французское происхождение и произошло от слова carburation – смешивание. В этом и состоит предназначение данного ключевого узла системы питания двигателя внутреннего сгорания – в смешивании бензина с воздухом и подаче определённого количества данной смеси в рабочие полости цилиндров. Карбюратор – это механическое смешивающее и дозирующее устройство для ДВС. На смеси мельчайших капель горючего с воздухом, которую он образует и впрыскивает в цилиндры, и работает мотор.
Немного истории. Прежние типы карбюраторов
Как только изобретатели второй половины XIX века начали пытаться оснастить технику двигателями, работающими на бензине и керосине, им пришлось учитывать, что воспламеняется это топливо только при участии воздуха. Более того, для эффективной работы двигателя надо ещё и смешать воздух с горючим в определённой пропорции.
Первый карбюратор изобрёл в 1876 году итальянец Луиджи Христофорис. В его устройстве топливо разогревалось, испарялось, и его пары смешивались с воздухом. Через год Даймлер и Майбах нашли более рациональное решение, применив принцип распыления топлива. Этот простой и эффективный принцип и лёг в основу всех последующих разработок.
До повсеместного распространения карбюраторов поплавкового типа применялось ещё два вида данных устройств: барботажные и мембранно-игольчатые карбюраторы.
Барботажные карбюраторы представляли собой бензобаки, внутри которых на небольшом расстоянии от поверхности топлива имелась глухая доска и два широких патрубка – один подаёт из атмосферы, и второй – отбирает топливно-воздушную смесь в двигатель. Воздух проходит под доской, над поверхностью горючего, насыщается его парами, и получается горючая смесь.
Это примитивная, но действенная конструкция. Дроссельная заслонка располагалась на моторе отдельно. Работа двигателя с барботажным карбюратором зависела от погоды на улице: степень испаряемости топлива изменялась, в зависимости от температуры окружающей среды. Часть топливно-воздушной смеси могла конденсироваться. Вся конструкция была довольно взрывоопасной и сложной в регулировании.
Мембранно-игольчатый карбюратор – это уже отдельное от бензобака законченное устройство. Оно состоит из нескольких камер, которые разделены мембранами и жёстко связаны между собой штоком.На этом штоке закреплена игла, запирающая седло клапана подачи топлива. Камеры соединены каналами со смесительной полостью, с одной стороны, и с топливным каналом – с другой.
Характеристики такого карбюратора определяются тарированными пружинами, на которые опираются мембраны. Это уже не примитивная, но достаточно простая конструкция, достоинством которой, кроме её простоты, является способность безотказно работать в любом положении и любых условиях. Такие карбюраторы стояли в первой половине ХХ века не только на автомобилях и мотоциклах, но и на самолётах с поршневыми двигателями внутреннего сгорания.
Третий тип карбюраторов, который и стал в итоге основным во всём мировом автомобилестроении – это поплавковый карбюратор с жиклёрами. Поплавковый карбюратор, конструкция которого регулярно подвергалась усовершенствованиям, завоевал в итоге всеобщую популярность во всём мире. Он являлся очень универсальными устройством и мог быть установлен при помощи переходника на самые разнообразные модели автомобилей и мотоциклов.Его устройство и будет рассмотрено в следующих разделах этой публикации.
Эти карбюраторы, последнего поколения данных устройств, ставились на автомобили «Ниссан» на рубеже 80-х и 90-х годов. Их сложность заключается в большом количестве вспомогательных устройств, отвечающих за стабилизацию работы карбюратора в различных режимах (резкий сброс газа, режим холостого хода в процессе простоя на автомобиле с автоматической КПП, выравнивание и стабилизацию оборотов мотора при запуске климатической установки, и т.п.). Соответственно, такой, «доведённый до совершенства» карбюратор был дополнен многочисленными вспомогательными устройствами: клапанами, биметаллическими пружинами, обогревателями и т.д.
Инжекторные системы впрыска были изобретены уже давно, но вначале они стоили дорого для массового автопроизводства. А вот появление и повсеместное внедрение в автоиндустрии доступных по цене микропроцессоров в итоге привело к тому, что необходимость в карбюраторе, даже в самом сложном, с электромагнитными клапанами и дополнительными устройствами, попросту исчезла. Все функции отдельных элементов карбюратора стал выполнять один-единственный электронный блок управления (ЭБУ), а в конструкции инжектора были найдены простые устройства исполнения.
Устройство поплавкового карбюратора
Поплавковый карбюратор обеспечивает наиболее стабильные параметры топливно-воздушной смеси на выходе и обладает самыми высокими эксплуатационными качествами, по сравнению с предыдущими типами этих устройств. Кстати, ошибочным является утверждение о том, что инжектор однозначно экономичнее карбюратора. Хорошо настроенный поплавковый карбюратор обеспечивает схожие с инжектором показатели расхода горючего, однако, разумеется, он не настолько стабилен в работе.
Состоит поплавковый карбюратор из следующих основных элементов: поплавковая камера; поплавок; запорная игла поплавка, жиклёр; смесительная камера; распылитель; смесительная камера с диффузором – трубкой Вентури; дроссельная заслонка. В поплавковую камеру по специальной магистрали из бензобака подаётся топливо. Регулирование количества этого поданного бензина производится в камере при помощи двух взаимосвязанных элементов. Это поплавок и игла.
Принцип работы поплавкового карбюратора
Когда уровень горючего, по мере его расходования, в поплавковой камере снижается, то и поплавок опускается вместе с иглой. Эта опустившаяся игла открывает доступ для подачи в камеру следующей порции топлива. Когда же камера заполняется бензином на должный уровень, поплавок поднимается, а игла при этом одновременно перекрывает горючему доступ. Так этот поплавковый клапан поддерживает постоянный уровень бензина в рабочей полости.
В поплавковой камере карбюратора имеется специальное балансировочное отверстие. Благодаря ему в поплавковой камере поддерживается атмосферное давление. Практически во всех серийно выпускаемых карбюраторах, работающих с воздушными фильтрами, вместо роль данного отверстия выполняет балансировочный канал поплавковой камеры, который ведёт не в атмосферу, а в полость воздушного фильтра,либо в верхнюю часть смесительной камеры. При таком решении дросселирующее влияние фильтра отражается равномерно на всей газодинамике карбюратора, который становится балансированным.
Следующий ключевой элемент карбюратора – жиклёр – располагается внизу поплавковой камеры. Жиклёр работает в качестве калибратора, обеспечивая дозированную подачу топлива. Сквозь жиклёр горючее попадает в распылитель. Так происходит перемещение нужного количества горючего из поплавковой камеры в смесительную камеру. В смесительной камере происходит процесс приготовления рабочей топливно-воздушной смеси.
В смесительной камере расположены диффузор – трубка Вентури и впускной трубопровод, который распределит приготовленную топливную смесь по цилиндрам. Распылитель находится в самой узкой части диффузора, где скорость потока достигает максимума, а давление уменьшается до минимума. Под воздействием разности давлений бензин выбрасывается из распылителя, дробится и распыляется в струе воздуха, и, при перемешивании с ним, образует горючую топливно-воздушную смесь.
В последующем вместо одиночного диффузора в карбюраторах был использован двойной. Этот дополнительный диффузор имеет малые размеры и располагается концентрически в главном диффузоре. Вместо жидкого топлива в карбюраторах современной конструкции в распылитель подаётся не гомогенное жидкое топливо, а эмульсия из бензина и воздуха. При такой конструкции достигается более качественное распыление горючего.
Количество топливно-воздушной смеси, которая поступает для сгорания в цилиндры двигателя, регулируется дроссельной заслонкой.У горизонтальный карбюраторов вместо поворотной заслонки применён шибер – золотник.
Поплавковая камера
Одним из важнейших факторов эффективной работы карбюратора является уровень топлива в поплавковой камере. От правильного уровня горючего зависит устойчивая работа двигателя на холостом ходу и на малых оборотах. Поскольку регулировка системы холостого хода фактически определяет правильную компенсацию состава ГДС, то от стабильности уровня топлива косвенно зависит работа и на всех прочих режимах.
Значение уровня бензина в камере заложена таким образом, чтобы при любых отклонениях устройства от вертикального положения не происходило бы самопроизвольного изливания горючего из распылителей в смесительную камеру. Для дополнительной компенсации приливно-отливных явлений, в более совершенных карбюраторах были предусмотрены дополнительные экономайзеры, а также спараллеленные поплавковые камеры, выполненные по бокам карбюратора и соединённые между собой поперечным каналом или специальной сообщающейся полостью. Поплавки в разных карбюраторах делали спаянными из штампованных латунных половинок, либо изготовленными из пластмассы.
Смесительная камера. Дозирующие системы, экономайзеры, эконстаты
Смесительная камера обеспечивает смешивание мельчайших капель бензина, этого «тумана», в проходящий воздушный поток. Эту функцию выполняет диффузор – специально суженый участок камеры. Благодаря данному диффузору воздух, проходящий сквозь него, значительно ускоряется.Движение воздуха при ускорении в диффузоре обеспечивает образование разрежения в распылительной трубке. Из-за этого бензин постоянно добавляется и подмешивается в проходящий поток.
Двигатель в ходе эксплуатации работает в различных режимах. Поэтому и топливно-воздушные смеси требуются разного состава, в том числе и с резким изменением содержания фракций бензиновых паров. Для приготовления смеси разных концентраций, оптимальных при разном режиме работы мотора, «продвинутые» карбюраторы снабжены дозирующими устройствами. Они вступают в работу, либо отключаются в разное время, либо работают одновременно, обеспечивая наиболее оптимальный для получения наилучшего сочетания мощности и экономичности состав смеси на всех режимах двигателя. Эти дозирующие системы основаны на пневматической компенсации состава топливно-воздушной смеси.
Экономайзеры и эконостаты являются дополнительными параллельными системами подачи топлива в смесительную камеру. Они обогащают топливно-воздушную смесь только при высоких уровнях вакуума (т.е. при близких к максимальным нагрузках), когда экономично сформированная смесь не может обеспечить потребностей двигателя. Экономайзеры снабжены принудительным управлением, пневматического или механического вида.
Эконостаты представляют собою просто трубки определённого сечения, в некоторых случаях – с эмульсионными каналами, выведенные в пространство смесительной камеры выше диффузора – в зону появления вакуума при максимальных нагрузках.
Система холостого хода
Система холостого хода, которой снабжались карбюраторы последних поколений, призвана обеспечивать устойчивую работу мотора на малых оборотах, когда дроссельная заслонка полностью закрыта. Это отдельные каналы, по которым воздух и бензин подаются под дроссельную заслонку. Смесительная камера в этом случае вовсе не задействуется, так как система холостого хода подаёт необходимое количество топливно-воздушной смеси во впускной коллектор в обход её.
Механический «подсос» топлива
Не насыщенность, а просто количество рабочей топливно-воздушной смеси, которое поступает в цилиндры двигателя, зависит от положения дроссельной заслонки. Эта заслонка напрямую связана с педалью газа в кабине. Знатокам старой ВАЗовской «классики» знакомо также ещё одно устройство для управления дроссельной заслонкой. Это «подсос» для холодного запуска мотора – рычаг механического «подсоса» топлива, в нижней части приборной панели. Если вытянуть «подсос» на себя, то заслонка прикрывается.
Тем самым ограничивается доступ воздуха и увеличивается уровень разрежения в смесительной камере карбюратора. Бензин из поплавковой камеры при повышенном разрежении вытягивается в смесительную камеру гораздо интенсивнее, а недостаточное количество поступившего воздуха делает возможным приготовление для мотора обогащенной рабочей смеси, более подходящей для запуска холодного двигателя.
Классификация карбюраторов
Карбюраторы классифицируют:
- По направлению потока топливно-воздушной смеси – на вертикальные и горизонтальные.
- По способу регулировки сечения распылителя и образования разрежения – с постоянным разрежением (наиболее новые и прогрессивные карбюраторы европейского и японского производства); с постоянным сечением распылителя – все серийные карбюраторы до последних поколений этих устройств, в том числе и все массово выпускаемые в СССР; с золотниковым дросселированием – по большей части, горизонтальные карбюраторы для мотоциклов, в которых вместо дроссельной заслонки количество подаваемой смеси регулирует шибер-золотник.
- По количеству смесительных камер – на однокамерные и многокамерные. «Сдвоенные» карбюраторы есть смысл использовать, например, на моторах, где цилиндры достаточно далеко расположены друг от друга. Тогда каждая половина впрыскивает топливно-воздушную смесь только в «свои» цилиндры. Кроме «спараллеленных» двух- и четырёхкамерных карбюраторов, существовали также серийные трёхкамерные карбюраторы (например, «К-156» для 3102-й «Волги»). Параллельно работающими здесь были 1-я и 3-я смесительные камеры, они подавали смесь в 2-ю – «форкамеру».
Преимущества и недостатки использования карбюраторов
К достоинствам карбюраторов следует отнести высокую гомогенность смеси на выходе; низкую стоимость и технологическую доступность при производстве;сравнительную простоту при обслуживании и ремонте, ремонтопригодность без необходимости специального оборудования. В отличие от инжектора, который требует электрического питания, работа карбюратора происходит исключительно за счёт энергии потока воздуха, всасываемого двигателем.
Основной же причиной вытеснения карбюратора из автомобильной системы питания стала невозможность обеспечить топливно-воздушную смесь индивидуального состава для каждой из вспышек. А инжекторная система с распределённым впрыском действует именно таким образом, стабильно обеспечивая экономичность и экологичность работы двигателя.
оценивших 15, оценка: 3,33 из 5
Смотрите также статьи по теме
- Концерн CLAAS ускорил рост. Итоги финансового года
- Трактор ДТ-75: технические характеристики
- CLAAS: российский рынок сельхозтехники нацелен на долгосрочный рост
- CLAAS расширяет модельный ряд жаток ORBIS
- Картофелесажалка СК-4: технические характеристики
- Самоходное шасси ВТЗ-30СШ
- Концерн CLAAS и Carraro Group начинают сотрудничество в области производства тракторов, мостов и пов...
- Джон Дир 6195М: технические характеристики
- Завод «КЛААС» на 22-м месте в рейтинге лучших работодателей России
- Многофункциональность грузовиков JAC на BAUMA CTT
- Фронтальный погрузчик Hyundai HL780-9S
- Алехандро Саяго станет вице-президентом John Deere по продажам и маркетингу в Европе и странах СНГ